Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur J Immunol ; 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2127680

ABSTRACT

Memory T cell responses have been analyzed only in small cohorts of COVID-19 vaccines. Herein, we aimed to assess anti-SARS-CoV-2 cellular immunity in a large cohort using QuantiFERON assays, which are IFN-γ release assays (IGRAs) based on short-term whole blood culture. The study included 571 individuals receiving the viral spike (S) protein-expressing BNT162b2 mRNA vaccine. QuantiFERON assays revealed antigen-specific IFN-γ production in most individuals 8 weeks after the second dose. Simultaneous flow cytometric assays to detect T cells expressing activation-induced markers (AIMs) performed for 28 randomly selected individuals provided data correlating with the QuantiFERON data. Simultaneous IFN-γ enzyme-linked immunospot and AIM assays for another subset of 31 individuals, based on short-term peripheral blood mononuclear cell culture, also indicated a correlation between IFN-γ production and AIM positivity. These observations indicated the acquisition of T cell memory responses and supported the usability of IGRAs to assess cellular immunity. The QuantiFERON results were weakly correlated with serum IgG titers against the receptor-binding domain of the S protein and were associated with pre-vaccination infection and adverse reactions after the second dose. The present study revealed cellular immunity after COVID-19 vaccination, providing insights into the effects and adverse reactions of vaccination.

2.
J Infect Chemother ; 27(7): 1058-1062, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1188757

ABSTRACT

INTRODUCTION: Rapid antigen detection (RAD) tests are convenient tools for detecting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinics, and testing using saliva samples could decrease the risk of infection during sample collection. This study aimed to assess the accuracy of the SARS-CoV-2 RAD for testing of nasopharyngeal swab specimens and saliva samples in comparison with the RT-PCR tests and viral culture for detecting viable virus. METHODS: One hundred seventeen nasopharyngeal swab specimens and 73 saliva samples with positive results on RT-PCR were used. Residual samples were assayed using a commercially available RAD test immediately, and its positivity was determined at various time points during the clinical course. The concordance between 54 nasopharyngeal swab samples and saliva samples that were collected simultaneously was determined. Viral culture was performed on 117 samples and compared with the results of the RAD test. RESULTS: The positive rate of RAD test using saliva samples was low throughout the clinical course. Poor concordance was observed between nasopharyngeal swab specimens and saliva samples (75.9%, kappa coefficient 0.310). However, a substantially high concordance between the RAD test and viral culture was observed in both nasopharyngeal swab specimens (86.8%, kappa coefficient 0.680) and saliva samples (95.1%, kappa coefficient 0.643). CONCLUSIONS: The sensitivity of the SARS-CoV-2 RAD test was insufficient, particularly for saliva samples. However, a substantially high concordance with viral culture suggests its potential utility as an auxiliary test for estimating SARS-CoV-2 viability.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nasopharynx , Reverse Transcriptase Polymerase Chain Reaction , Saliva
SELECTION OF CITATIONS
SEARCH DETAIL